原子力显微镜(AFM)
原子力显微镜(Atomic Force Microscope,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息。
测试原理:
AFM是用微小探针“摸索”样品表面来获得信息。
如下图所示,当针尖接近样品时,针尖受到力的作用使悬臂发生偏转或振幅改变。悬臂的这种变化经检测系统检测后转变成电信号传递给反馈系统和成像系统,记录扫描过程中一系列探针变化就可以获得样品表面信息图像。
以布鲁克Dimension Icon为例,常规测试步骤如下所示(仅供参考):
1、制样。对于粉末样品使用溶剂分散到云母片(不同样品使用的基底不同)上制样,对于液体样品直接分散到云母片上制样;
2、根据测试要求选择测量模式;
3、安装探针。
4、调整激光、光电探测器、针尖、聚焦样品表面等操作;
5、根据测试要求设置扫描参数;
6、开始进针扫描;
7、导出数据。
不同型号仪器结果形式会有差别,下面展示的是Bruker Dimension ICON型号AFM的结果,仅供参考。
1、表面形貌和表面粗糙度
AFM可以对样品表面形态、纳米结构、链构象等方面进行研究,获得纳米颗粒尺寸,孔径,材料表面粗糙度,材料表面缺陷等信息,同时还能做表面结构形貌跟踪(随时间,温度等条件变化)。也可对样品的形貌进行丰富的三维模拟显示,使图像更适合于人的直观视觉。下图表征的是纳米颗粒的二维几何形貌图,三维高度形貌图以及粗糙度。
2、精准定位如:纳米片厚度/台阶高度
什么是精准定位?就是需要花时间去一点点找这个地方。
在半导体加工过程中通常需要测量高纵比结构,像沟槽和台阶,以确定刻蚀的深度和宽度。这些在SEM 下只有将样品沿截面切开才能测量,AFM 可以对其进行无损的测量。AFM在垂直方向的分辨率约为0.1 nm,因此可以很好的用于表征纳米片厚度。下图表征的是台阶高度和纳米片厚度图。
3、相图
作为轻敲模式的一项重要的扩展技术,相位模式是通过检测驱动微悬臂探针振动的信号源的相位角与微悬臂探针实际振动的相位角之差(即两者的相移)的变化来成像。引起该相移的因素很多,如样品的组分、硬度、粘弹性质,模量等。简单来说,如果两种材料从AFM形貌上来说,对比度比较小,但你又非常想说明这是在什么膜上长的另外一种,这个时候可以利用二维形貌图+相图来说明(前提是两种材料的物理特性较为不同,相图有明显对比信号才行)。
布鲁克AFM仪器的测试原始文件.spm格式可用布鲁克离线软件Nanoscope analysis软件打开。
1. 样品状态:可为粉末、液体、块体、薄膜样品;
2. 粉末样品:常规测试项目样品起伏一般不超过5微米,特殊测试项目样品起伏一般不超过1um,提供20mg,液体不少于1ml,尺寸过大请提前咨询客户经理;
3. 粉末/液体样品请务必备注好制样条件,包括分散液,超声时间及配制浓度;
4. 薄膜或块状样品尺寸要求:长宽0.5-3cm之间,厚度0.1-1cm之间,表面粗糙度不超过5um,一定要标明测试面!块状样品需要固定好,避免在寄送过程产生晃动或摩擦影响测试结果!
5. 测试PFM、KPFM、C-AFM、PeakForce TUNA的材料需要将样品制备在导电基底上,基底大小符合块状样品的尺寸要求,KPFM、C-AFM、PeakForce TUNA的样品需要导电或至少为半导体;
6. PFM,KPFM测试需要样品表面十分平整,样品粗糙度最好在10-200nm之间,粉末样品测试很难测到较好结果,下单前请确保风险可接受。
一般来说AFM仪器测试的Z相范围是10um左右(有些仪器可能只有2um),因此样品表面起伏过大的样品可能会超出仪器扫描范围,另外粗糙度比较大的样品会导致针尖易磨钝或者受污染,对图像质量有很大影响,且磨损无法修复增加耗材成本。
AFM拍摄也需要不断寻找合适的位置拍摄,同一样品不同拍摄部位表面形貌和粗糙度极有可能不一致,因为原子力显微镜成像范围较小,与拍摄样品表面是否均匀息息相关。
作为轻敲模式的一项重要的扩展技术,相位模式是通过检测驱动微悬臂探针振动的信号源的相位角与微悬臂探针实际振动的相位角之差(即两者的相移)的变化来成像。引起该相移的因素很多,如样品的组分、硬度、粘弹性质,模量等。因此利用相位模式,可以在纳米尺度上获得样品表面局域性质的丰富信息。值得注意的是,相移模式作为轻敲模式一项重要的扩展技术,虽然很有用。但单单是分析相位模式得到的图像是没有意义的,必须和形貌图相结合,比较分析两个图像才能得到你需要的信息。简单来说,如果两种材料从AFM形貌上来说,对比度比较小,但又非常想说明这是在什么膜上长的另外一种,这个时候可以利用二维形貌图+相图来说明(前提是两种材料的物理特性较为不同,相图有明显对比信号才行)。
AFM常规测试项目对样品的导电性没有要求,不导电的样品也是可以测试的,不需要做喷金处理,但是部分电学模块的测试,比如KPFM,是需要样品导电的,金颗粒是有一定尺寸的,喷金后可能会在形貌上有影响,因此一般不建议喷金处理。
表面粗糙度计算,这是AFM的优势,可以得到全图粗糙度和所选区域的粗糙度,Rq:均方根粗糙度和Ra:平均值粗糙度,这两个都能参考,在使用时同组数据保持一致就行。如果需要获得粗糙度值,在AFM的离线软件选中高度图,直接点击roughness即可。
Force mapping是力曲线面扫。通过对Force mapping拟合换算可以获得杨氏模量图。Force mapping和杨氏模量图之间最关键的差别是:一般Force mapping图的采集分辨率为16*16,32*32或64*64, 效果如下左图所示。杨氏模量图的采集分辨率为256*256,效果如下右图所示。另外Force mapping结果默认是可以保留力曲线的数据的,但是杨氏模量图默认是不保留力曲线的数据的(如果杨氏模量图需要导出力曲线,需要在测试前说明),一般蛋白类的样品不适合杨氏模量图,因为杨氏模量图需要的力比较大,并且对样品有要求,制备均匀,厚度超过20nm才可以做杨氏模量图。
力曲线和Force mapping的区别就在于力曲线采集的数据少(类似能谱点扫,一般随机采集3-5个点),Force mapping采集的力曲线多(类似力曲线面扫,分辨率可以为16*16,32*32等),面扫的每个点的力曲线都可以导出,但是数据量比较大,一般不建议全部导出;杨氏模量图的可以获得面范围内的杨氏模量分布,分辨率一般为256*256,但默认不保存力曲线的数据,如果需要在采集杨氏模量图的时候保存力曲线的数据需要提前说明。
压电力显微镜(PFM)即是在AFM基础上发展起来利用原子力显微镜导电探针检测样品的在外加激励电压下的电致形变量的显微镜。为了有效的提取出PFM信号,通常会对探针施加某一固定频率(远低于探针共振频率)的激励信号,通过锁相放大器对PFM信号进行提取。 在PFM测试中,常规仪器的激励电压一般为10V左右,配有高压模块的仪器可以测试到220V。
PFM测试中获得的信噪比取决于样品的压电响应、探针种类和驱动电压大小等诸多因素。 在大多数情况下,增加驱动电压(即施加在样品上的交流电的振幅),信噪比将得到改善。如果被测样品是薄膜的情况则需要注意,过大的驱动电压可能导致样品被极化。因此针对不同样品主要选择合适的驱动电压,建议通过参照同类型样品的参考文献进行选择。
TUNA电流是探针要触及样品后的隧穿电流值,反应了样品的导电性,同时探针不会对样品造成损坏,可以说即可以表征样品本征形貌,也反应了样品的电学性能。C-AFM是直接接触样品,如果样品不够硬(比如有机物),针尖会直接划破样品,同时采集电学信号。两种方式,电流大小会有差异,pktuna模式下,电流会小一些,相对比较的话,结果上是一样。
跟材料导电性能有关,导电材料的话几微米厚的可以,要是半导体材料的话可能需要是纳米级别的,1微米以下。